Sensitivity for reverse-phi motion
نویسندگان
چکیده
Low-level contrast information in the primary visual pathway is represented in two different channels. ON-center cells signal positive contrasts and OFF-center cells signal negative contrasts. In this study we address the question whether initial motion analysis is performed separately in these two channels, or also through combination of signals from ON and OFF cells. We quantitatively compared motion coherence detection for regular and for reverse-phi motion stimuli. In reverse-phi motion the contrast of a pattern flips during displacements. Sensitivity is therefore based on correlating positive and negative contrasts, whereas for regular motion it is based on correlating similar contrasts. We compared tuning curves for step size and temporal interval for stimuli in which motion information was limited to a single combination of step size and interval. Tuning for step size and temporal interval was highly similar for the two types of motion. Moreover, minimal coherence thresholds for both types of motion matched quantitatively, irrespective of dot density. We also measured sensitivity for so-called no-phi motion stimuli, in which the contrast of displaced dots was set to zero. Sensitivity for no-phi motion was low for stimuli containing only black or only white dots. When both dot polarities were present in the stimulus, sensitivity was absent. Thus, motion information based on separate contrasts was effectively cancelled by a component based on different contrasts. Together these results show equal efficiency in correlating dots of opposite contrast and of similar contrast, which strongly suggests efficient detection of correlations across ON and OFF channels.
منابع مشابه
Spatiotemporal characterization of a Fourier and non-Fourier motion system
Direct-phi perception elicited by a reverse-phi (i.e. reversed-polarity) stimulus may well be accounted for, if the front-end filters of a classical Reichardt unit are full-wave rectifiers. It is shown that reverse-phi perception is progressively replaced by direct-phi perception when either the spatial or the temporal modulation of the reversed-polarity stimuli are decreased. Reverse-phi perce...
متن کاملModeling Reverse-Phi Motion-Selective Neurons in Cortex: Double Synaptic-Veto Mechanism
Reverse-phi motion is the illusory reversal of perceived direction of movement when the stimulus contrast is reversed in successive frames. Livingstone, Tsao, and Conway (2000) showed that direction-selective cells in striate cortex of the alert macaque monkey showed reversed excitatory and inhibitory regions when two different contrast bars were flashed sequentially during a two-bar interactio...
متن کاملNeural correlates of illusory motion perception in Drosophila.
When the contrast of an image flickers as it moves, humans perceive an illusory reversal in the direction of motion. This classic illusion, called reverse-phi motion, has been well-characterized using psychophysics, and several models have been proposed to account for its effects. Here, we show that Drosophila melanogaster also respond behaviorally to the reverse-phi illusion and that the illus...
متن کاملNeural mechanisms underlying sensitivity to reverse-phi motion in the fly
Optical illusions provide powerful tools for mapping the algorithms and circuits that underlie visual processing, revealing structure through atypical function. Of particular note in the study of motion detection has been the reverse-phi illusion. When contrast reversals accompany discrete movement, detected direction tends to invert. This occurs across a wide range of organisms, spanning human...
متن کاملRapid Motion Adaptation Reveals the Temporal Dynamics of Spatiotemporal Correlation between ON and OFF Pathways
At the early stages of visual processing, information is processed by two major thalamic pathways encoding brightness increments (ON) and decrements (OFF). Accumulating evidence suggests that these pathways interact and merge as early as in primary visual cortex. Using regular and reverse-phi motion in a rapid adaptation paradigm, we investigated the temporal dynamics of within and across pathw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Vision Research
دوره 49 شماره
صفحات -
تاریخ انتشار 2009